首页 新闻 > 科技 > 正文

机器人技术电路设计图集锦

、C6的参数,74121的6脚输出一个保持时间大约为100ms的高电平,单片机以此高电平信号作为修正方向的依据。

微处理器和电机驱动电路见下图。单片机的P3.1、P3.2和P3.2分别与左、中、右三个方向传感器的输出相连,三个传感器输出共有8种组合,单片机根据不同的组合状态修正机器人的前进方向,其修正方向和传感器输出组合的关系见方向修正真值下表。

从真值表中可以清楚的看到当三个传感器输出都为0时,也就是真值表中的“000”状态时单片机控制机器人顺时针方向旋转以寻找红外线发射源;当输入为 “001”状态时单片机控制机器人向右前进;当输入为“110”状态时单片机控制机器人向左前进;当输入为“111”状态时单片机控制机器人向正前方前进;当输入为“101”状态时,代表机器人正前方的传感器被障碍物阻挡,单片机控制机器人向左方向旋转以避开障碍物,也意味着当有障碍物阻挡机器人前进时机器人可以自动绕开障碍物并重新寻找红外线发射源。

基于STM32F107的搬运机器人电机控制电路设计

随着人工成本的不断升高,用机器人代替人力去做一些重复性的高强度的劳动是现代机器人研究的一个重要方向。搬运机器人在导航寻迹中,需要后轮驱动电机和前轮舵机的协调工作。搬运机器人电机驱动有其特殊的应用要求,对电机的动态性能要求较高,能在任意时刻到达控制需要的指定位置并且使舵机停止在任意角度;电机驱动的转矩变化范围大,既有空载平整路面行使的高速度、低转矩工作环境,也有满负载爬坡的运行工况,同时还要求保持较高的运行效率。根据以上的技术要求,本文选用了控制技术成熟,易于平滑调速的直流电机作为搬运机器人的执行饥构。

功率驱动电路设计

电机的供电电源是由24V的蓄电池提供,额定功率为240W,由4个75N75组成桥式电路来实现。75N75是MOSFET功率管,其最高耐压75V,最高耐流75A,电机驱动电路如图2所示。

Q1、Q4和Q2、Q3分别组成两个桥路,分别控制电机的正转和反转。高端驱动的MOS管导通时源极电压和漏极电压相同且都等于供电电乐VCC,所以要实现MOS管正常的驱动,栅极电压要比VCC大,这就需要专门的升压芯片IR2103。控制器产生的PWM信号输入HIN引脚,控制器I/O口输出的 EN1、EN2作为使能信号。输出端HO就可得到比VCC要高的电压,且高出的电压值正好是充在电容两端的电压。二极管提高导通速度,使得75N75的导通电阻更小,降低了开关管的损失。同时IR2103的两个输出口HO、LO具有互锁功能,防止由于软件或硬件错误造成的电机上下桥臂直通造成短路。

过流保护电路设计

在电机控制系统中安装过流保护有两方面的意义:一是防止在电机正常运行时,电机出现超载或堵转而使得电枢绕组电流过大损害电机甚至引发火灾;另一方面是由于电机肩动时启动电流很大,往往不能直接启动,既需要等励磁绕组逐渐建立磁场后再正常运行,又希望电机以尽量快的速度肩动起来。有了过流保护对电流进行斩波,可以使电机安全快速地启动。过流保护原理图如图3所示。

电机的相电流通过康铜丝转换成电压信号Vtext,经过运算放大器放大后的模拟量AD1送至控制器A/D转换模块,同时将经过电压比较器比较后的数字量 EVA送至控制器的外部中断口。针对搬运机器人的前轮转向舵机和后轮驱动电机的控制要求,采用以Cortex-M3为内核的STM32F107作为主控制器,采用嵌入实时操作系统μC/OS-II,将程序分成启动任务、电机转速控制任务、舵机控制任务等相对独立的多个任务,并设定了各任务的优先级。该系统能较好地实现搬运机器人的运动控制。

TOP10 智能小车机器人整体电路设计

语音输入电路设计

小车的语音输入电路如图所示。其中,VM IC 提供传声器的电源,VSS是系统的模拟地,VCM 为参考电压,1脚和2脚分别是传声器X1 的正极、负极的输入引脚。当对着传声器讲话时,1脚和2 脚将随着传声器输入的声音产生变化的波形,并在SPCE061A 的两个端口处形成两路反相的波形,送到SPCE061A 控制器内部的运算放大器进行音频放大,经过放大的音频信号,通过ADC转化器转化为数字量,保存到相应的寄存器中,然后对这些数字音频信号进行压缩、辨识、播放等处理。

语音输出电路设计

小车的语音输入电路如图所示。其中,VDDH 为参考电压,VSS是系统的模拟地。音频信号由SPCE061A 的DAC引脚输出送到电路的9端,通过音量电位器R9的调节端送到集成音频功率放大器SPY0030, 经音频放大后,音频信号从SPY0030输出经J2端口外接扬声器播放声音。

光电检测电路设计

小车的光电检测电路采用E18-D80NK型号的光电传感器,它集发射和接受于一体,红外发射管向某一方向发射红外线,遇到障碍物后红外线被反射由接收管接受,从而判断出小车的前方是否有障碍物,对障碍物的感应距离可以根据要求通过传感器上的微调旋钮进行调节。传感器前端增加了透镜,利用聚焦作用远距离探测物体。传感器内部集成了放大、比较、调制电路,使传感器受可见光的影响较小,光电检测电路的连接图如图4所示。

驱动电路设计

小车的驱动电路是一个全桥驱动电路( 图5),Q1,Q2, Q3, Q4四个三极管组成4个桥臂,Q5 控制Q2和Q3的导通和关断,Q6控制Q1 和Q4 的导通和关断,驱动电路分别用于后轮动力驱动电路和前轮方向驱动电路。当1管脚为高电平,2管脚为低电平时时Q1 和Q4 导通,Q2和Q3截止,电动机带动车轮运转; 当1管脚为低电平,2管脚为高电平时时Q1和Q4截止,Q2和Q3导通,电动机带动车轮反向运转。

智能小车系统整体设计

将语音输入电路的1, 2 端口分别连接到SPCE061A控制器的M ICP, N ICN 管脚上; 将语音输出电路的9端口连接SPCE061A的DAC1管脚; 后轮动力驱动电路的1, 2端连接到SPCE061A的IOB8, IOB9管脚,前轮方向驱动电路的1, 2端连接到SPCE061A 的IOB10, IOB11管脚; 光电检测电路的OUT 端连接SPCE061A 的IOB12 管脚,智能小车的整体连接如图6所示。

智能小车的正确识别率在90% 以上,实验过程中发现,影响小车正常辨识的因素主要包括周围环境的噪声、人与小车的距离等,这些需要在今后改进。这种语音控制的智能小车机器人将来不仅可以为人服务,稍加扩展,还可以在多种不适合人作业的场合替代人执行任务。因此这种语音控制小车机器人具有重要的学术研究价值。

TOP11带PC机串口通讯的机器人控制系统电路设计

用AVRmega8515作一个带PC机串口通讯的最小单片机机器人控制系统,电路图见下图。使用时用WINDOWS自带的超级终端,把速率调整到9600,8个数据位.1个停止位,无奇偶效验,无流量控制(握手协议Xon/Xoff).接上串口线,按照屏幕提示输入数据就可以直观地控制3台舵机的旋转角度。

以下介绍一款24路机器人专用控制器。其主要是供不熟悉单片机的读者来使用。该系统整体硬件基本和上述最小单片机控制系统一样,还增加了一片采用I2C 总线通讯方式的24C256 EEPROM存储器,用来记录24路庞大的动作表,主控单片机也是AVRmega 8515.整个动作编程通过PC机串口终端仿真器来实现的。可同时控制24台舵机,并且能分别对台舵机进行速度控制,其中可以插入循环、延时指令。该控制器能让制作者从繁琐的单片机编程中解放出来,并且能让有PC机编程能力的读者进行二次开发。

基于嵌入式的机器人系统电路模块设计

机器人要实现的动作和功能较多,需要多个传感器对外界进行检测,并实时控制机器人的位置、动作和运行状态。系统中的所有任务最终都挂在实时操作系统μC/0S一Ⅱ上运行,因此不仅要考虑微控制器的内部资源,还要看其可移植性和可扩展性。LPC2129是Philips公司生产的一款32位 arm7TDMI—S微处理器,嵌入256 KB高速Flash存储器,它采用3级流水线技术,同时进行取指、译码和执行,而且能够并行处理指令,提高CPU的运行速度。由于它的尺寸非常小,功耗极低,抗干扰能力强,适用于各种工业控制。2个32位定时计数器、6路PWM输出和47个通用I/0口,所以特别适用于对环境要求较低的工业控制和小型智能机器人系统。因此选用 LPC2129为主控制器,可以获得设计结构简单、性能稳定的智能机器人控制系统。

无线通信接口设计

系统采用迅通公司生产的PTR2000无线通信数据收发模块。电路接口如图2所示。该模块基于NORDIC公司生产的射频器件nRF401开发,其特点是:①有两个频道可供选择,工作速率高达20 Kb/s;②接收发射合一,适合双工和单工通信,因而通信方式比较灵活;③体积小,所需外围元件少,接口电路简单,因此特别适合机器人小型化要求;④可直接接单片机串口模块,控制简单;⑤抗干扰能力强;⑥功耗小,通信稳定。

超声波测距传感器电路设计

两路超声波传感器用以控制机器人避开障碍物,并预测机器人相对目的地距离,起导航作用,其接收部分与微控制器的捕获和定时管脚相连接。整个超声波检测系统由超声

关键词: 机器人技术电路设

最近更新

关于本站 管理团队 版权申明 网站地图 联系合作 招聘信息

Copyright © 2005-2018 创投网 - www.xunjk.com All rights reserved
联系我们:33 92 950@qq.com
豫ICP备2020035879号-12